Solved

Solve the Problem x10+y2+z9=1\frac { x } { 10 } + \frac { y } { 2 } + \frac { z } { 9 } = 1

Question 381

Multiple Choice

Solve the problem.
-Find the center of mass of a tetrahedron of constant density bounded by the coordinate planes and the plane x10+y2+z9=1\frac { x } { 10 } + \frac { y } { 2 } + \frac { z } { 9 } = 1 .


A) xˉ=5,yˉ=1,zˉ=92\bar { x } = 5 , \bar { y } = 1 , \bar { z } = \frac { 9 } { 2 }
B) xˉ=203,yˉ=43,zˉ=6\bar { x } = \frac { 20 } { 3 } , \bar { y } = \frac { 4 } { 3 } , \bar { z } = 6
C) xˉ=103,yˉ=23,zˉ=3\bar { x } = \frac { 10 } { 3 } , \bar { y } = \frac { 2 } { 3 } , \bar { z } = 3
D) xˉ=52,yˉ=12,zˉ=94\bar { x } = \frac { 5 } { 2 } , \bar { y } = \frac { 1 } { 2 } , \bar { z } = \frac { 9 } { 4 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions