Solved

Find an Upper Bound for the Magnitude |E| of the Error

Question 336

Multiple Choice

Find an upper bound for the magnitude |E| of the error in the approximation f(x, y) ≈ L(x, y) at the given point over the
given region R.
- f(x,y,z) =8x2+7y2+2z2 at (1,2,3) ;R:x10.1,y+20.1,z30.1f ( x , y , z ) = 8 x ^ { 2 } + 7 y ^ { 2 } + 2 z ^ { 2 } \text { at } ( 1 , - 2,3 ) ; R : | x - 1 | \leq 0.1 , | y + 2 | \leq 0.1 , | z - 3 | \leq 0.1


A) E0.64| E | \leq 0.64
B) E0.72| \mathrm { E } | \leq 0.72
C) E0.96| E | \leq 0.96
D) E0.48| E | \leq 0.48

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions