Solved

Find the Absolute Maximum and Minimum Values of the Function f(x,y)=xy;f ( x , y ) = x y ;

Question 335

Multiple Choice

Find the absolute maximum and minimum values of the function on the given curve.
-Function: f(x,y) =xy;f ( x , y ) = x y ; curve: x2+y2=49,x0,y0x ^ { 2 } + y ^ { 2 } = 49 , x \geq 0 , y \geq 0 . (Use the parametric equations x=7x = 7 cos t,y=7sintt , y = 7 \sin t .)


A) Absolute maximum: 494\frac { 49 } { 4 } at t=π4;t = \frac { \pi } { 4 } ; absolute minimum: 0 at t=0t = 0 and t=π2t = \frac { \pi } { 2 }
B) Absolute maximum: 494\frac { 49 } { 4 } at t=π4t = \frac { \pi } { 4 } ; absolute minimum: 0 at t=0t = 0 and t=π4t = \frac { \pi } { 4 }
C) Absolute maximum: 492\frac { 49 } { 2 } at t=π4;t = \frac { \pi } { 4 } ; absolute minimum: 0 at t=0t = 0 and t=π2t = \frac { \pi } { 2 }
D) Absolute maximum: 492\frac { 49 } { 2 } at t=π4;t = \frac { \pi } { 4 } ; absolute minimum: 0 at t=0t = 0 and t=π4t = \frac { \pi } { 4 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions