Solved

Use Taylor's Formula to Find the Requested Approximation of F(x f(x,y)=1(1+x+3y)2f ( x , y ) = \frac { 1 } { ( 1 + x + 3 y ) ^ { 2 } }

Question 331

Multiple Choice

Use Taylor's formula to find the requested approximation of f(x, y) near the origin.
-Cubic approximation to f(x,y) =1(1+x+3y) 2f ( x , y ) = \frac { 1 } { ( 1 + x + 3 y ) ^ { 2 } }


A) 1+2x+6y3x218xy27y2+4x3+36x2y+108xy2+108y31 + 2 x + 6 y - 3 x ^ { 2 } - 18 x y - 27 y ^ { 2 } + 4 x ^ { 3 } + 36 x ^ { 2 } y + 108 x y ^ { 2 } + 108 y ^ { 3 }
B) 1+2x+6y3x224xy27y2+4x3+36x2y+108xy2+108y31 + 2 x + 6 y - 3 x ^ { 2 } - 24 x y - 27 y ^ { 2 } + 4 x ^ { 3 } + 36 x ^ { 2 } y + 108 x y ^ { 2 } + 108 y ^ { 3 }
C) 12x6y+3x2+18xy+27y24x336x2y108xy2108y31 - 2 x - 6 y + 3 x ^ { 2 } + 18 x y + 27 y ^ { 2 } - 4 x ^ { 3 } - 36 x ^ { 2 } y - 108 x y ^ { 2 } - 108 y ^ { 3 }
D) 12x6y+3x2+24xy+27y24x336x2y108xy2108y31 - 2 x - 6 y + 3 x ^ { 2 } + 24 x y + 27 y ^ { 2 } - 4 x ^ { 3 } - 36 x ^ { 2 } y - 108 x y ^ { 2 } - 108 y ^ { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions