Solved

Find the Absolute Maximum and Minimum Values of the Function f(x,y)=xy;f ( x , y ) = x y ;

Question 311

Multiple Choice

Find the absolute maximum and minimum values of the function on the given curve.
-Function: f(x,y) =xy;f ( x , y ) = x y ; curve: x236+y281=1,y0\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 81 } = 1 , y \geq 0 . (Use the parametric equations x=6cost,y=9sintx = 6 \cos t , y = 9 \sin t .)


A) Absolute maximum: 272\frac { 27 } { 2 } at t=π4;t = \frac { \pi } { 4 } ; absolute minimum: 272- \frac { 27 } { 2 } at t=3π4t = \frac { 3 \pi } { 4 }
B) Absolute maximum: 272\frac { 27 } { 2 } at t=π4t = \frac { \pi } { 4 } ; absolute minimum: 27- 27 at t=3π4t = \frac { 3 \pi } { 4 }
C) Absolute maximum: 27 at t=π4;t = \frac { \pi } { 4 } ; absolute minimum: 272- \frac { 27 } { 2 } at t=3π4t = \frac { 3 \pi } { 4 }
D) Absolute maximum: 27 at t=π4;t = \frac { \pi } { 4 } ; absolute minimum: 27- 27 at t=3π4t = \frac { 3 \pi } { 4 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions