Solved

If R(t) Is the Position Vector of a Particle in the Plane

Question 68

Multiple Choice

If r(t) is the position vector of a particle in the plane at time t, find the indicated vector.
-Find the velocity vector. r(t) = (cot t) i + (csc t) j


A) v=(sec2t) i(tantsect) j\mathbf { v } = \left( - \sec ^ { 2 } t \right) \mathbf { i } - ( \tan t \sec t ) \mathbf { j }
B) v=(csc2t) i+(cottcsct) j\mathbf { v } = \left( \csc ^ { 2 } \mathrm { t } \right) \mathbf { i } + ( \cot \mathrm { t } \csc \mathrm { t } ) \mathbf { j }
C) v=(csc2t) i(cottcsct) j\mathbf { v } = \left( - \csc ^ { 2 } \mathrm { t } \right) \mathbf { i } - ( \cot \mathrm { t } \csc \mathrm { t } ) \mathbf { j }
D) v=(sec2t) i+(tantsect) j\mathbf { v } = \left( \sec ^ { 2 } \mathrm { t } \right) \mathbf { i } + ( \tan \mathrm { t } \sec \mathrm { t } ) \mathbf { j }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions