Solved

Solve the Initial Value Problem Initial Condition r(0)=5i6j\mathbf { r } ( 0 ) = 5 \mathbf { i } - 6 \mathbf { j }

Question 69

Multiple Choice

Solve the initial value problem.
-Differential Equation: drdt=(t4+5t2) i+4tj\frac { \mathrm { d } \mathbf { r } } { \mathrm { dt } } = \left( \mathrm { t } ^ { 4 } + 5 \mathrm { t } ^ { 2 } \right) \mathbf { i } + 4 \mathrm { t } \mathbf { j }
Initial Condition: r(0) =5i6j\mathbf { r } ( 0 ) = 5 \mathbf { i } - 6 \mathbf { j }


A) r(t) =(t55+5t336) i+(2t2+5) jr ( t ) = \left( \frac { t ^ { 5 } } { 5 } + \frac { 5 t ^ { 3 } } { 3 } - 6 \right) i + \left( 2 t ^ { 2 } + 5 \right) \mathbf { j }
B) r(t) =(t55+5t33) i+2t2j\mathbf { r } ( \mathrm { t } ) = \left( \frac { \mathrm { t } ^ { 5 } } { 5 } + \frac { 5 \mathrm { t } ^ { 3 } } { 3 } \right) \mathbf { i } + 2 \mathrm { t } ^ { 2 } \mathbf { j }
C) r(t) =(t55+5t33+5) i+(2t26) jr ( t ) = \left( \frac { t ^ { 5 } } { 5 } + \frac { 5 t ^ { 3 } } { 3 } + 5 \right) i + \left( 2 t ^ { 2 } - 6 \right) \mathbf { j }
D) r(t) ={t55+5t33+5) i+(t26) jr ( t ) = \left\{ \frac { t ^ { 5 } } { 5 } + \frac { 5 t ^ { 3 } } { 3 } + 5 \right) i + \left( t ^ { 2 } - 6 \right) j

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions