Solved

Find the Curvature of the Curve R(t) r(t)=(3+ln(sect))i+(1+t)k,π/2<t<π/2\mathbf { r } ( \mathrm { t } ) = ( 3 + \ln ( \sec t ) ) \mathbf { i } + ( 1 + \mathrm { t } ) \mathbf { k } , - \pi / 2 < \mathrm { t } < \pi / 2

Question 65

Multiple Choice

Find the curvature of the curve r(t) .
- r(t) =(3+ln(sect) ) i+(1+t) k,π/2<t<π/2\mathbf { r } ( \mathrm { t } ) = ( 3 + \ln ( \sec t ) ) \mathbf { i } + ( 1 + \mathrm { t } ) \mathbf { k } , - \pi / 2 < \mathrm { t } < \pi / 2


A) κ=cost\kappa = - \cos t
B) κ=sint\kappa = \sin t
C) κ=cost\kappa = \cos t
D) κ=1cost\kappa = 1 - \cos t

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions