Solved

The Position Vector of a Particle Is R(t) t=π4t = \frac { \pi } { 4 }

Question 80

Multiple Choice

The position vector of a particle is r(t) . Find the requested vector.
-The velocity at t=π4t = \frac { \pi } { 4 } for r(t) =4sec2(t) i5tan(t) j+10t2k\mathbf { r } ( \mathrm { t } ) = 4 \sec ^ { 2 } ( \mathrm { t } ) \mathbf { i } - 5 \tan ( \mathrm { t } ) \mathbf { j } + 10 \mathrm { t } ^ { 2 } \mathbf { k }


A) v(π4) =10j5πk\mathbf { v } \left( \frac { \pi } { 4 } \right) = - 10 \mathbf { j } - 5 \pi \mathbf { k }
B) v(π4) =10j+5πk\mathbf { v } \left( \frac { \pi } { 4 } \right) = - 10 \mathbf { j } + 5 \pi \mathbf { k }
C) v(π4) =16i10j+5πk\mathbf { v } \left( \frac { \pi } { 4 } \right) = 16 \mathbf { i } - 10 \mathbf { j } + 5 \pi \mathbf { k }
D) v(π4) =16i+10j5πk\mathbf { v } \left( \frac { \pi } { 4 } \right) = 16 \mathbf { i } + 10 \mathbf { j } - 5 \pi \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions