Solved

Find the Unit Tangent Vector of the Given Curve A) T=2225i+245j+11225k\mathrm { T } = \frac { 2 } { 225 } \mathrm { i } + \frac { 2 } { 45 } \mathrm { j } + \frac { 11 } { 225 } \mathbf { k }

Question 133

Multiple Choice

Find the unit tangent vector of the given curve.
- r(t) =(5+2t8) i+(3+10t8) j+(5+11t8) k\mathbf { r } ( \mathrm { t } ) = \left( 5 + 2 \mathrm { t } ^ { 8 } \right) \mathbf { i } + \left( 3 + 10 \mathrm { t } ^ { 8 } \right) \mathbf { j } + \left( 5 + 11 t ^ { 8 } \right) \mathbf { k }


A) T=2225i+245j+11225k\mathrm { T } = \frac { 2 } { 225 } \mathrm { i } + \frac { 2 } { 45 } \mathrm { j } + \frac { 11 } { 225 } \mathbf { k }
B) T=215i+23j+1115k\mathrm { T } = \frac { 2 } { 15 } \mathrm { i } + \frac { 2 } { 3 } \mathrm { j } + \frac { 11 } { 15 } \mathbf { k }
C) T=1615i+163j+8815k\mathbf { T } = \frac { 16 } { 15 } \mathbf { i } + \frac { 16 } { 3 } \mathbf { j } + \frac { 88 } { 15 } \mathbf { k }
D) T=2i+10j+11k\mathbf { T } = 2 \mathbf { i } + 10 \mathbf { j } + 11 \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions