Solved

 Find the acceleration vector in terms of ur and uθ\text { Find the acceleration vector in terms of } u _ { r } \text { and } u _ { \theta } \text {. }

Question 134

Multiple Choice

 Find the acceleration vector in terms of ur and uθ\text { Find the acceleration vector in terms of } u _ { r } \text { and } u _ { \theta } \text {. }
- r=a(5cosθ)  and dθdt=9r = a ( 5 - \cos \theta ) \text { and } \frac { d \theta } { d t } = 9


A) a=25a(cosθ9a+acosθ) ur+(50asinθ) uθ\mathbf { a } = 25 \mathrm { a } ( \cos \theta - 9 \mathrm { a } + \mathrm { a } \cos \theta ) \mathbf { u } _ { \mathrm { r } } + ( 50 \mathrm { a } \sin \theta ) \mathbf { u } _ { \theta }
B) a=81a(cosθa+acosθ) ur+(162asinθ) uθ\mathbf { a } = 81 \mathrm { a } ( \cos \theta - \mathrm { a } + \mathrm { a } \cos \theta ) \mathbf { u } _ { \mathrm { r } } + ( 162 \mathrm { a } \sin \theta ) \mathbf { u } _ { \theta }
C) a=81a(2cosθ5) ur+(162asinθ) uθ\mathbf { a } = 81 \mathrm { a } ( 2 \cos \theta - 5 ) \mathbf { u } _ { \mathrm { r } } + ( 162 \mathrm { a } \sin \theta ) \mathbf { u } _ { \theta }
D) a=81a(cosθ+5aacosθ) ur(162asinθ) uθ\mathbf { a } = 81 \mathrm { a } ( \cos \theta + 5 \mathrm { a } - \mathrm { a } \cos \theta ) \mathbf { u } _ { \mathrm { r } } - ( 162 \mathrm { a } \sin \theta ) \mathbf { u } _ { \theta }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions