Solved

- A) 23et33\sqrt { 23 } e ^ { t } - 3 \sqrt { 3 }

Question 77

Multiple Choice

 Find the arc length parameter along the curve from the point where t=0 by evaluating s=0tv(τ) dτ\text { Find the arc length parameter along the curve from the point where } t = 0 \text { by evaluating } s = \int _ { 0 } ^ { t } | v ( \tau ) | d \tau \text {. }
- r(t) =(etcost) i+(etsint) j+5etk\mathbf { r } ( \mathrm { t } ) = \left( e ^ { t } \cos t \right) \mathbf { i } + \left( e ^ { t } \sin t \right) \mathbf { j } + 5 e ^ { t } \mathbf { k }


A) 23et33\sqrt { 23 } e ^ { t } - 3 \sqrt { 3 }
B) 23et23\sqrt { 23 } e ^ { t } - \sqrt { 23 }
C) 33et233 \sqrt { 3 } \mathrm { e } ^ { t } - \sqrt { 23 }
D) 33et333 \sqrt { 3 } e ^ { t } - 3 \sqrt { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions