Solved

Find T, N, and B for the Given Space Curve

Question 79

Multiple Choice

Find T, N, and B for the given space curve.
-r(t) = (cosh t) i + (sinh t) j + tk


A) T=22(tanhtsecht) i+22j+22(secht) k;N=(secht) i(tanht) k\mathbf { T } = - \frac { \sqrt { 2 } } { 2 } ( \tanh \mathrm { t } \operatorname { sech } \mathrm { t } ) \mathbf { i } + \frac { \sqrt { 2 } } { 2 } \mathbf { j } + \frac { \sqrt { 2 } } { 2 } ( \operatorname { sech } \mathrm { t } ) \mathbf { k } ; \mathbf { N } = ( - \operatorname { sech } \mathrm { t } ) \mathbf { i } - ( \tanh \mathrm { t } ) \mathbf { k } ; B=22(sinht) i22j22(secht) k\mathbf { B } = \frac { \sqrt { 2 } } { 2 } ( \sinh \mathrm { t } ) \mathbf { i } - \frac { \sqrt { 2 } } { 2 } \mathrm { j } - \frac { \sqrt { 2 } } { 2 } ( \operatorname { sech } t ) \mathbf { k }
B) T=22(tanhtsecht) i+22j+22(secht) k;N=(sech2t) i(sinht) k;\mathbf { T } = \frac { \sqrt { 2 } } { 2 } ( \tanh t \operatorname { sech } t ) \mathbf { i } + \frac { \sqrt { 2 } } { 2 } \mathbf { j } + \frac { \sqrt { 2 } } { 2 } ( \operatorname { sech } t ) \mathbf { k } ; \mathbf { N } = \left( \operatorname { sech } ^ { 2 } t \right) \mathbf { i } - ( \sinh t ) \mathbf { k } ; B=22(sinht) i+22j+22(secht) k\mathbf { B } = \frac { \sqrt { 2 } } { 2 } ( \sinh t ) \mathbf { i } + \frac { \sqrt { 2 } } { 2 } \mathbf { j } + \frac { \sqrt { 2 } } { 2 } ( \operatorname { sech } t ) \mathbf { k }
C) T=22(tanht) i+22j+22(secht) k;N=(secht) i(sinht) k\mathbf { T } = - \frac { \sqrt { 2 } } { 2 } ( \tanh t ) i + \frac { \sqrt { 2 } } { 2 } j + \frac { \sqrt { 2 } } { 2 } ( \operatorname { sech } t ) \mathbf { k } ; \mathbf { N } = ( - \operatorname { sech } t ) i - ( \sinh t ) \mathbf { k } ; B=22(sinht) i+22j22(secht) k\mathbf { B } = - \frac { \sqrt { 2 } } { 2 } ( \sinh t ) \mathbf { i } + \frac { \sqrt { 2 } } { 2 } \mathbf { j } - \frac { \sqrt { 2 } } { 2 } ( \operatorname { sech } t ) \mathbf { k }
D) T=22(tanht) i+22j+22(secht) k;N=(secht) i(tanht) k;B=22(tanht) i+22j22(secht) k\mathbf { T } = \frac { \sqrt { 2 } } { 2 } ( \tanh \mathrm { t } ) \mathbf { i } + \frac { \sqrt { 2 } } { 2 } \mathbf { j } + \frac { \sqrt { 2 } } { 2 } ( \operatorname { sech } t ) \mathbf { k } ; \mathbf { N } = ( \operatorname { sech } t ) \mathbf { i } - ( \tanh t ) \mathbf { k } ; \mathbf { B } = - \frac { \sqrt { 2 } } { 2 } ( \tanh \mathrm { t } ) \mathbf { i } + \frac { \sqrt { 2 } } { 2 } \mathbf { j } - \frac { \sqrt { 2 } } { 2 } ( \operatorname { sech } \mathrm { t } ) \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions