Solved

Find the Unit Tangent Vector of the Given Curve T=(7cost)j(7sint)k\mathbf { T } = ( 7 \cos t ) \mathbf { j } - ( 7 \sin t ) \mathbf { k }

Question 75

Multiple Choice

Find the unit tangent vector of the given curve.
-r(t) = (7t cos t - 7 sin t) j + (7t sin t + 7 cos t) k


A) T=(7cost) j(7sint) k\mathbf { T } = ( 7 \cos t ) \mathbf { j } - ( 7 \sin t ) \mathbf { k }
B) T=(7sint) j+(7cost) k\mathbf { T } = ( - 7 \sin t ) \mathbf { j } + ( 7 \cos t ) \mathbf { k }
C) T=(sint) j+(cost) k\mathbf { T } = ( - \sin t ) \mathbf { j } + ( \cos t ) \mathbf { k }
D) T=17(sint) j+17(cost) k\mathbf { T } = - \frac { 1 } { 7 } ( \sin t ) \mathbf { j } + \frac { 1 } { 7 } ( \cos t ) \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions