Solved

A Spherical Balloon Is Inflated with Gas at the Rate drdt=398πcm/min\frac { d r } { d t } = \frac { 3 } { 98 \pi } \mathrm { cm } / \mathrm { min }

Question 188

Multiple Choice

A spherical balloon is inflated with gas at the rate of cubic centimeters per minute. How fast is the radius of the balloon increasing at the instant the radius is centimeters?


A) drdt=398πcm/min\frac { d r } { d t } = \frac { 3 } { 98 \pi } \mathrm { cm } / \mathrm { min }
B) drdt=198πcm/min\frac { d r } { d t } = \frac { 1 } { 98 \pi } \mathrm { cm } / \mathrm { min }
C) drdt=3196πcm/min\frac { d r } { d t } = \frac { 3 } { 196 \pi } \mathrm { cm } / \mathrm { min }
D) drdt=98πcm/min\frac { d r } { d t } = 98 \pi \mathrm { cm } / \mathrm { min }
E) drdt=196πcm/min\frac { d r } { d t } = 196 \pi \mathrm { cm } / \mathrm { min }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions