Solved

 Use partial fractions to find 1x29dx\text { Use partial fractions to find } \int \frac { 1 } { x ^ { 2 } - 9 } d x \text {. }

Question 90

Multiple Choice

 Use partial fractions to find 1x29dx\text { Use partial fractions to find } \int \frac { 1 } { x ^ { 2 } - 9 } d x \text {. }


A) 1x29dx=16lnx3x+3+C\int \frac { 1 } { x ^ { 2 } - 9 } d x = \frac { 1 } { 6 } \ln \left| \frac { x - 3 } { x + 3 } \right| + C
B) 1x29dx=16(x3) 16(x+3) +C\int \frac { 1 } { x ^ { 2 } - 9 } d x = \frac { 1 } { 6 ( x - 3 ) } - \frac { 1 } { 6 ( x + 3 ) } + C
C) 1x29dx=16lnx6x+6+C\int \frac { 1 } { x ^ { 2 } - 9 } d x = \frac { 1 } { 6 } \ln \left| \frac { x - 6 } { x + 6 } \right| + C
D) 1x29dx=1(x3) 1(x+3) +C\int \frac { 1 } { x ^ { 2 } - 9 } d x = \frac { 1 } { ( x - 3 ) } - \frac { 1 } { ( x + 3 ) } + C
E) 1x29dx=lnx3x+3+C\int \frac { 1 } { x ^ { 2 } - 9 } d x = \ln \left| \frac { x - 3 } { x + 3 } \right| + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions