Solved

 Use partial fractions to find 6x2+14x3x3+3x2dx\text { Use partial fractions to find } \int \frac { 6 x ^ { 2 } + 14 x - 3 } { x ^ { 3 } + 3 x ^ { 2 } } d x

Question 8

Multiple Choice

 Use partial fractions to find 6x2+14x3x3+3x2dx\text { Use partial fractions to find } \int \frac { 6 x ^ { 2 } + 14 x - 3 } { x ^ { 3 } + 3 x ^ { 2 } } d x


A) 6x2+14x3x2(x+3) dx=lnx6+3x5+C\int \frac { 6 x ^ { 2 } + 14 x - 3 } { x ^ { 2 } ( x + 3 ) } d x = \ln \left| x ^ { 6 } + 3 x ^ { 5 } \right| + C
B) 6x2+14x3x2(x+3) dx=1x+(x6+3x5) +C\int \frac { 6 x ^ { 2 } + 14 x - 3 } { x ^ { 2 } ( x + 3 ) } d x = \frac { 1 } { x } + \left( x ^ { 6 } + 3 x ^ { 5 } \right) + C
C) 6x2+14x3x2(x+3) dx=1x+lnx7+x5+C\int \frac { 6 x ^ { 2 } + 14 x - 3 } { x ^ { 2 } ( x + 3 ) } d x = \frac { 1 } { x } + \ln \left| x ^ { 7 } + x ^ { 5 } \right| + C
D) 6x2+14x3x2(x+3) dx=lnx6+5x4+C\int \frac { 6 x ^ { 2 } + 14 x - 3 } { x ^ { 2 } ( x + 3 ) } d x = \ln \left| x ^ { 6 } + 5 x ^ { 4 } \right| + C
E) 6x2+14x3x2(x+3) dx=1x+lnx6+3x5+C\int \frac { 6 x ^ { 2 } + 14 x - 3 } { x ^ { 2 } ( x + 3 ) } d x = \frac { 1 } { x } + \ln \left| x ^ { 6 } + 3 x ^ { 5 } \right| + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions