Solved

Use Substitution and Partial Fractions to Find the Indefinite Integral xx25dx\int \frac { \sqrt { x } } { x - 25 } d x

Question 12

Multiple Choice

Use substitution and partial fractions to find the indefinite integral.
xx25dx\int \frac { \sqrt { x } } { x - 25 } d x


A)
xx25dx=5log(5x) 4log(x5) +C\int \frac { \sqrt { x } } { x - 25 } d x = 5 \log ( 5 - \sqrt { x } ) - 4 \log ( \sqrt { x } - 5 ) + C
B)
xx25dx=x+log(5x) 4log(x5) +C\int \frac { \sqrt { x } } { x - 25 } d x = \sqrt { x } + \log ( 5 - \sqrt { x } ) - 4 \log ( \sqrt { x } - 5 ) + C
C)
xx25dx=2x+log(1x) +C\int \frac { \sqrt { x } } { x - 25 } d x = 2 \sqrt { x } + \log ( 1 - \sqrt { x } ) + C
D)
xx25dx=2x+x2+5log(5x) 4log(x5) +C\int \frac { \sqrt { x } } { x - 25 } d x = 2 \sqrt { x } + x ^ { 2 } + 5 \log ( 5 - \sqrt { x } ) - 4 \log ( \sqrt { x } - 5 ) + C
E)
xx25dx=2x+5log(5x) 4log(x5) +C\int \frac { \sqrt { x } } { x - 25 } d x = 2 \sqrt { x } + 5 \log ( 5 - \sqrt { x } ) - 4 \log ( \sqrt { x } - 5 ) + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions