Solved

 Use partial fractions to find x2+x+5x4+10x2+25dx\text { Use partial fractions to find } \int \frac { x ^ { 2 } + x + 5 } { x ^ { 4 } + 10 x ^ { 2 } + 25 } d x \text {. }

Question 48

Multiple Choice

 Use partial fractions to find x2+x+5x4+10x2+25dx\text { Use partial fractions to find } \int \frac { x ^ { 2 } + x + 5 } { x ^ { 4 } + 10 x ^ { 2 } + 25 } d x \text {. }


A)
x2+x+5x4+10x2+25dx=(1/5) arctan(x/5) 12(x2+5) +C\int \frac { x ^ { 2 } + x + 5 } { x ^ { 4 } + 10 x ^ { 2 } + 25 } d x = ( 1 / \sqrt { 5 } ) \arctan ( x / \sqrt { 5 } ) - \frac { 1 } { 2 \left( x ^ { 2 } + 5 \right) } + C
B)
x2+x+5x4+10x2+25dx=12(x2+10) +C\int \frac { x ^ { 2 } + x + 5 } { x ^ { 4 } + 10 x ^ { 2 } + 25 } d x = \frac { 1 } { 2 \left( x ^ { 2 } + 10 \right) } + C
C)
x2+x+5x4+10x2+25dx=(1/5) arcsin(x/5) +C\int \frac { x ^ { 2 } + x + 5 } { x ^ { 4 } + 10 x ^ { 2 } + 25 } d x = ( 1 / \sqrt { 5 } ) \arcsin ( x / \sqrt { 5 } ) + C
D)
x2+x+5x4+10x2+25dx=12(x2+5) +C\int \frac { x ^ { 2 } + x + 5 } { x ^ { 4 } + 10 x ^ { 2 } + 25 } d x = - \frac { 1 } { 2 \left( x ^ { 2 } + 5 \right) } + C
E)
x2+x+5x4+10x2+25dx=arctan(x/10) 12(x2+5) +C\int \frac { x ^ { 2 } + x + 5 } { x ^ { 4 } + 10 x ^ { 2 } + 25 } d x = \arctan ( x / \sqrt { 10 } ) - \frac { 1 } { 2 \left( x ^ { 2 } + 5 \right) } + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions