Solved

A) B) C) D) E)

Question 49

Multiple Choice

 Use substitution to find the integral ex(e2x+1) (ex3) dx\text { Use substitution to find the integral } \int \frac { e ^ { x } } { \left( e ^ { 2 x } + 1 \right) \left( e ^ { x } - 3 \right) } d x \text {. }


A)
ex(e2x+3) (ex3) dx=124(arctan(ex) ) +C\int \frac { e ^ { x } } { \left( e ^ { 2 x } + 3 \right) \left( e ^ { x } - 3 \right) } d x = \frac { 1 } { 24 } \left( \arctan \left( e ^ { x } \right) \right) + C
B)
ex(e2x+3) (ex3) dx=124(lne2x+32arctan(ex) ) +C\int \frac { e ^ { x } } { \left( e ^ { 2 x } + 3 \right) \left( e ^ { x } - 3 \right) } d x = \frac { 1 } { 24 } \left( \ln \left| e ^ { 2 x } + 3 \right| - 2 \arctan \left( e ^ { x } \right) \right) + C
C)
ex(e2x+3) (ex3) dx=124(2lnex3lne2x+64arctan(e2x) ) +C\int \frac { e ^ { x } } { \left( e ^ { 2 x } + 3 \right) \left( e ^ { x } - 3 \right) } d x = \frac { 1 } { 24 } \left( 2 \ln \left| e ^ { x } - 3 \right| - \ln \left| e ^ { 2 x } + 6 \right| - 4 \arctan \left( e ^ { 2 x } \right) \right) + C
D)
ex(e2x+3) (ex3) dx=120(2lnex3lne2x+16arctan(ex) ) +C\int \frac { e ^ { x } } { \left( e ^ { 2 x } + 3 \right) \left( e ^ { x } - 3 \right) } d x = \frac { 1 } { 20 } \left( 2 \ln \left| e ^ { x } - 3 \right| - \ln \left| e ^ { 2 x } + 1 \right| - 6 \arctan \left( e ^ { x } \right) \right) + C
E)
ex(e2x+3) (ex3) dx=124(2lne2x6lne2x+62arctan(ex) ) +C\int \frac { e ^ { x } } { \left( e ^ { 2 x } + 3 \right) \left( e ^ { x } - 3 \right) } d x = \frac { 1 } { 24 } \left( 2 \ln \left| e ^ { 2 x } - 6 \right| - \ln \left| e ^ { 2 x } + 6 \right| - 2 \arctan \left( e ^ { x } \right) \right) + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions