Solved

 A population is growing according to the logistic model N=60001+e4.21.6t, where t\text { A population is growing according to the logistic model } N = \frac { 6000 } { 1 + e ^ { 4.2 - 1.6 ^ { t } } } \text {, where } t

Question 14

Multiple Choice

 A population is growing according to the logistic model N=60001+e4.21.6t, where t\text { A population is growing according to the logistic model } N = \frac { 6000 } { 1 + e ^ { 4.2 - 1.6 ^ { t } } } \text {, where } t is the time in days. Find the average population over the interval [0,2][ 0,2 ] . Round your answer to one decimal place.


A) 559.5ft.lbs559.5 \mathrm { ft } . \mathrm { lbs }
B) 2434.5ft2434.5 \mathrm { ft } lbs
C) 716.1ftlbs716.1 \mathrm { ft } \mathrm { lbs }
D) 5117.6ft.lbs5117.6 \mathrm { ft } . \mathrm { lbs }
E) 3116.1ft3116.1 \mathrm { ft } lbs

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions