Solved

Use a Power Series to Solve the Differential Equation ytt25y=0y ^ { tt } - 25 y = 0

Question 4

Multiple Choice

Use a power series to solve the differential equation ytt25y=0y ^ { tt } - 25 y = 0


A) y=C0e5x+C1e5xy = C _ { 0 } e ^ { 5 x } + C _ { 1 } e ^ { - 5 x } , where C0C _ { 0 } and C1C _ { 1 } are arbitrary constants
B) y=C0x+C1e5xy = C _ { 0 } x + C _ { 1 } e ^ { 5 x } , where C0C _ { 0 } and C1C _ { 1 } are arbitrary constants
C) y=C0x+C1e5xy = C _ { 0 } x + C _ { 1 } e ^ { - 5 x } , where C0C _ { 0 } and C1C _ { 1 } are arbitrary constants
D) y=(C0+C1x) e5xy = \left( C _ { 0 } + C _ { 1 } x \right) e ^ { - 5 x } , where C0C _ { 0 } and C1C _ { 1 } are arbitrary constants
E) y=(C0+C1x) e5xy = \left( C _ { 0 } + C _ { 1 } x \right) e ^ { 5 x } , where C0C _ { 0 } and C1C _ { 1 } are arbitrary constants

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions