Solved

Use Taylor's Theorem to Find the First Four Terms of the Series

Question 8

Multiple Choice

Use Taylor's Theorem to find the first four terms of the series solution of ytt+exyt(sinx) y=0y ^ { tt } + e ^ { x } y ^ {t } - ( \sin x ) y = 0 given the initial conditions y(0) =5y ( 0 ) = - 5 , and yt(0) =7y ^ { t } ( 0 ) = 7 and use it to calculate y(14) y \left( \frac { 1 } { 4 } \right) . Round your answer to three decimal places.


A) y=5+71!x52!x273!x3+,y(14) 3.424y = - 5 + \frac { 7 } { 1 ! } x - \frac { 5 } { 2 ! } x ^ { 2 } - \frac { 7 } { 3 ! } x ^ { 3 } + \cdots , y \left( \frac { 1 } { 4 } \right) \approx - 3.424
B) y=5+71!x52!x2+73!x3+;y(14) 3.388y = - 5 + \frac { 7 } { 1 ! } x - \frac { 5 } { 2 ! } x ^ { 2 } + \frac { 7 } { 3 ! } x ^ { 3 } + \cdots ; y \left( \frac { 1 } { 4 } \right) \approx - 3.388
C) y=5+71!x212!x2103!x3+,y(14) 3.932y = - 5 + \frac { 7 } { 1 ! } x - \frac { 21 } { 2 ! } x ^ { 2 } - \frac { 10 } { 3 ! } x ^ { 3 } + \cdots , y \left( \frac { 1 } { 4 } \right) \approx - 3.932
D) y=5+71!x72!x2+53!x3+,y(14) 3.456y = - 5 + \frac { 7 } { 1 ! } x - \frac { 7 } { 2 ! } x ^ { 2 } + \frac { 5 } { 3 ! } x ^ { 3 } + \cdots , y \left( \frac { 1 } { 4 } \right) \approx - 3.456
E) y=5+71!x72!x253!x3+;y(14) 3.482y = - 5 + \frac { 7 } { 1 ! } x - \frac { 7 } { 2 ! } x ^ { 2 } - \frac { 5 } { 3 ! } x ^ { 3 } + \cdots ; y \left( \frac { 1 } { 4 } \right) \approx - 3.482

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions