Solved

Solve the Differential Equation 10yttxyty=010 y ^ { tt } - x y ^ { t } - y = 0

Question 1

Multiple Choice

Solve the differential equation 10yttxyty=010 y ^ { tt } - x y ^ { t } - y = 0


A) y=a0n=0x2n10n2nn!y = a _ { 0 } \sum _ { n = 0 } ^ { \infty } \frac { x ^ { 2 n } } { 10 ^ { n } 2 ^ { n } n ! } , where a0a _ { 0 } is an arbitrary constant
B) y=a0n=0x2n10nn!+a1n=0x2n+1(n+1) !y = a _ { 0 } \sum _ { n = 0 } ^ { \infty } \frac { x ^ { 2 n } } { 10 ^ { n } n ! } + a _ { 1 } \sum _ { n = 0 } ^ { \infty } \frac { x ^ { 2 n + 1 } } { ( n + 1 ) ! } , where a0a _ { 0 } and a1a _ { 1 } are arbitrary constants
C) y=a0n=0x2n10n2nn!+a1n=0x2n+110n1357(2n+1) y = a _ { 0 } \sum _ { n = 0 } ^ { \infty } \frac { x ^ { 2 n } } { 10 ^ { n } 2 ^ { n } n ! } + a _ { 1 } \sum _ { n = 0 } ^ { \infty } \frac { x ^ { 2 n + 1 } } { 10 ^ { n } \cdot 1 \cdot 3 \cdot 5 \cdot 7 \cdots ( 2 n + 1 ) } , where a0a _ { 0 } and a1a _ { 1 } are arbitrary constants
D) y=a0n=0x2n10n2n+1n!+a1n=0x2n+11357(2n+1) y = a _ { 0 } \sum _ { n = 0 } ^ { \infty } \frac { x ^ { 2 n } } { 10 ^ { n } 2 ^ { n + 1 } n ! } + a _ { 1 } \sum _ { n = 0 } ^ { \infty } \frac { x ^ { 2 n + 1 } } { 1 \cdot 3 \cdot 5 \cdot 7 \cdots ( 2 n + 1 ) } , where a0a _ { 0 } and a1a _ { 1 } are arbitrary constants
E) y=a0+a1n=0x2n10n1357(2n+1) y = a _ { 0 } + a _ { 1 } \sum _ { n = 0 } ^ { \infty } \frac { x ^ { 2 n } } { 10 ^ { n } \cdot 1 \cdot 3 \cdot 5 \cdot 7 \cdots ( 2 n + 1 ) } , where a0a _ { 0 } and a1a _ { 1 } are arbitrary constants

Correct Answer:

verifed

Verified

Related Questions