Solved

Find the First Eight Terms of the Power Series Representing ytt+11x2y=0y ^ { tt } + 11 x ^ { 2 } y = 0

Question 16

Multiple Choice

Find the first eight terms of the power series representing independent solutions of the differential equation ytt+11x2y=0y ^ { tt } + 11 x ^ { 2 } y = 0 .


A) y=a0(1x44!+x88!x1212!+) +a1(x1!x55!+x99!x1313!+) y = a _ { 0 } \left( 1 - \frac { x ^ { 4 } } { 4 ! } + \frac { x ^ { 8 } } { 8 ! } - \frac { x ^ { 12 } } { 12 ! } + \cdots \right) + a _ { 1 } \left( \frac { x } { 1 ! } - \frac { x ^ { 5 } } { 5 ! } + \frac { x ^ { 9 } } { 9 ! } - \frac { x ^ { 13 } } { 13 ! } + \cdots \right) , where a0a _ { 0 } and a1a _ { 1 } are arbitrary constants
B) y=a0(111x443+112x88743113x1212118743+) +a1(x11x554+112x79854113x913129854+) \begin{aligned}y = & a _ { 0 } \left( 1 - \frac { 11 \cdot x ^ { 4 } } { 4 \cdot 3 } + \frac { 11 ^ { 2 } \cdot x ^ { 8 } } { 8 \cdot 7 \cdot 4 \cdot 3 } - \frac { 11 ^ { 3 } \cdot x ^ { 12 } } { 12 \cdot 11 \cdot 8 \cdot 7 \cdot 4 \cdot 3 } + \cdots \right) \\& + a _ { 1 } \left( x - \frac { 11 \cdot x ^ { 5 } } { 5 \cdot 4 } + \frac { 11 ^ { 2 } \cdot x ^ { 7 } } { 9 \cdot 8 \cdot 5 \cdot 4 } - \frac { 11 ^ { 3 } \cdot x ^ { 9 } } { 13 \cdot 12 \cdot 9 \cdot 8 \cdot 5 \cdot 4 } + \cdots \right) \end{aligned}
where a0a _ { 0 } and a1a _ { 1 } are arbitrary constants
C) y=a0(111x42!+112x86!113x1210!+) +a1(x1!11x55!+112x97!113x1311!+) y = a _ { 0 } \left( 1 - \frac { 11 \cdot x ^ { 4 } } { 2 ! } + \frac { 11 ^ { 2 } \cdot x ^ { 8 } } { 6 ! } - \frac { 11 ^ { 3 } \cdot x ^ { 12 } } { 10 ! } + \cdots \right) + a _ { 1 } \left( \frac { x } { 1 ! } - \frac { 11 \cdot x ^ { 5 } } { 5 ! } + \frac { 11 ^ { 2 } \cdot x ^ { 9 } } { 7 ! } - \frac { 11 ^ { 3 } \cdot x ^ { 13 } } { 11 ! } + \cdots \right) , where a0a _ { 0 } and a1a _ { 1 } are arbitrary constants
D) y=a0(1x22!x66!x1010!+) +a1(x1!x33!x77!x1111!+) y = a _ { 0 } \left( 1 - \frac { x ^ { 2 } } { 2 ! } - \frac { x ^ { 6 } } { 6 ! } - \frac { x ^ { 10 } } { 10 ! } + \cdots \right) + a _ { 1 } \left( \frac { x } { 1 ! } - \frac { x ^ { 3 } } { 3 ! } - \frac { x ^ { 7 } } { 7 ! } - \frac { x ^ { 11 } } { 11 ! } + \cdots \right) , where a0a _ { 0 } and a1a _ { 1 } are arbitrary constants
E)
y=a0(111x443112x887113x121211+) +a1(x11x554112x998113x131312+) y = a _ { 0 } \left( 1 - \frac { 11 \cdot x ^ { 4 } } { 4 \cdot 3 } - \frac { 11 ^ { 2 } \cdot x ^ { 8 } } { 8 \cdot 7 } - \frac { 11 ^ { 3 } \cdot x ^ { 12 } } { 12 \cdot 11 } + \cdots \right) + a _ { 1 } \left( x - \frac { 11 \cdot x ^ { 5 } } { 5 \cdot 4 } - \frac { 11 ^ { 2 } \cdot x ^ { 9 } } { 9 \cdot 8 } - \frac { 11 ^ { 3 } \cdot x ^ { 13 } } { 13 \cdot 12 } + \cdots \right) where a0a _ { 0 } and a1a _ { 1 } are arbitrary constants

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions