Solved

Use Taylor's Theorem to Find the First Eight Terms of the Series

Question 13

Multiple Choice

Use Taylor's Theorem to find the first eight terms of the series solution of ytt2xyt+y=0y ^ { tt } - 2 x y ^ { t } + y = 0 given the initial conditions y(0) =1,yt(0) =4y ( 0 ) = 1 , y ^ { t} ( 0 ) = 4 and use it to calculate y(13) y \left( \frac { 1 } { 3 } \right) .
Round your answer to three decimal places.


A) y=1+41!x12!x2+43!x3+34!x4+205!x5+216!x6+1807!x7+;y(13) 2.305y = 1 + \frac { 4 } { 1 ! } x - \frac { 1 } { 2 ! } x ^ { 2 } + \frac { 4 } { 3 ! } x ^ { 3 } + \frac { 3 } { 4 ! } x ^ { 4 } + \frac { 20 } { 5 ! } x ^ { 5 } + \frac { 21 } { 6 ! } x ^ { 6 } + \frac { 180 } { 7 ! } x ^ { 7 } + \cdots ; y \left( \frac { 1 } { 3 } \right) \leqslant 2.305
B) y=1+41!x12!x2+43!x334!x4+205!x5216!x6+1807!x7+;y(13) 2.302y = 1 + \frac { 4 } { 1 ! } x - \frac { 1 } { 2 ! } x ^ { 2 } + \frac { 4 } { 3 ! } x ^ { 3 } - \frac { 3 } { 4 ! } x ^ { 4 } + \frac { 20 } { 5 ! } x ^ { 5 } - \frac { 21 } { 6 ! } x ^ { 6 } + \frac { 180 } { 7 ! } x ^ { 7 } + \cdots ; y \left( \frac { 1 } { 3 } \right) \approx 2.302
C) y=141!x+22!x243!x3+34!x445!x5+46!x647!x7+;y(13) 0.468y = 1 - \frac { 4 } { 1 ! } x + \frac { 2 } { 2 ! } x ^ { 2 } - \frac { 4 } { 3 ! } x ^ { 3 } + \frac { 3 } { 4 ! } x ^ { 4 } - \frac { 4 } { 5 ! } x ^ { 5 } + \frac { 4 } { 6 ! } x ^ { 6 } - \frac { 4 } { 7 ! } x ^ { 7 } + \cdots ; y \left( \frac { 1 } { 3 } \right) \approx - 0.468
D)
y=1+41!x+12!x2+123!x3+34!x4+285!x5846!x6+457!x7+,y(13) 2.465y = 1 + \frac { 4 } { 1 ! } x + \frac { 1 } { 2 ! } x ^ { 2 } + \frac { 12 } { 3 ! } x ^ { 3 } + \frac { 3 } { 4 ! } x ^ { 4 } + \frac { 28 } { 5 ! } x ^ { 5 } - \frac { 84 } { 6 ! } x ^ { 6 } + \frac { 45 } { 7 ! } x ^ { 7 } + \cdots , y \left( \frac { 1 } { 3 } \right) \approx 2.465
E)
y=1+41!x12!x2+123!x334!x4+285!x5846!x6+457!x7+,y(13) 2.351y = 1 + \frac { 4 } { 1 ! } x - \frac { 1 } { 2 ! } x ^ { 2 } + \frac { 12 } { 3 ! } x ^ { 3 } - \frac { 3 } { 4 ! } x ^ { 4 } + \frac { 28 } { 5 ! } x ^ { 5 } - \frac { 84 } { 6 ! } x ^ { 6 } + \frac { 45 } { 7 ! } x ^ { 7 } + \cdots , y \left( \frac { 1 } { 3 } \right) \approx 2.351

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions