Solved

Evaluate the Integral by Using a Substitution Prior to Integration x2x2+21dx\int \frac { x ^ { 2 } } { \sqrt { x ^ { 2 } + 21 } } d x

Question 89

Multiple Choice

Evaluate the integral by using a substitution prior to integration by parts.
- x2x2+21dx\int \frac { x ^ { 2 } } { \sqrt { x ^ { 2 } + 21 } } d x


A) 3x2x2+21212ln(x+x2+21) +C\frac { 3 x } { 2 } \sqrt { x ^ { 2 } + 21 } - \frac { 21 } { 2 } \ln \left( x + \sqrt { x ^ { 2 } + 21 } \right) + C
B) 3x2x2+21+212ln(x+x2+21) +C\frac { 3 x } { 2 } \sqrt { x ^ { 2 } + 21 } + \frac { 21 } { 2 } \ln \left( x + \sqrt { x ^ { 2 } + 21 } \right) + C
C) x2x2+21+212ln(x+x2+21) +C\frac { x } { 2 } \sqrt { x ^ { 2 } + 21 } + \frac { 21 } { 2 } \ln \left( x + \sqrt { x ^ { 2 } + 21 } \right) + C
D) x2x2+21212ln(x+x2+21) +C\frac { x } { 2 } \sqrt { x ^ { 2 } + 21 } - \frac { 21 } { 2 } \ln \left( x + \sqrt { x ^ { 2 } + 21 } \right) + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions