Solved

Use Integration by Parts to Establish a Reduction Formula for the Integral

Question 90

Multiple Choice

Use integration by parts to establish a reduction formula for the integral.
- tannxdx,n1\int \tan ^ { \mathrm { n } } \mathrm { xdx } , \mathrm { n } \neq 1


A) tannxdx=1n1tann1xtann2xdx\int \tan ^ { n } x d x = \frac { 1 } { n - 1 } \tan ^ { n - 1 } x - \int \tan ^ { n - 2 } x d x
B) tannxdx=1n1tann1x+tann1xdx\int \tan ^ { n } x d x = \frac { 1 } { n - 1 } \tan ^ { n - 1 } x + \int \tan ^ { n - 1 } x d x
C) tannxdx=tann1x1n1tann2xdx\int \tan ^ { n } x d x = \tan ^ { n - 1 } x - \frac { 1 } { n - 1 } \int \tan ^ { n - 2 } x d x
D) tannxdx=1n1tann2xtann1xdx\int \tan ^ { n } x d x = \frac { 1 } { n - 1 } \tan ^ { n - 2 } x - \int \tan ^ { n - 1 } x d x

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions