Solved

Provide an Appropriate Response e=QhQcQhe = \frac { Q _ { h } - Q _ { c } } { Q _ { h } }

Question 174

Multiple Choice

Provide an appropriate response.
-A heat engine is a device that converts thermal energy into other forms. The thermal efficiency, e, of a heat engin defined by
e=QhQcQhe = \frac { Q _ { h } - Q _ { c } } { Q _ { h } } where Qh\mathrm { Q } _ { \mathrm { h } } is the heat absorbed in one cycle and QC\mathrm { Q } _ { \mathrm { C } } , the heat released into a reservoir in one cycle, is a constant.
Find d2edQ2\frac { \mathrm { d } ^ { 2 } \mathrm { e } } { \mathrm { dQ } ^ { 2 } } .


A) d2edQh2=QC2Qh2\frac { \mathrm { d } ^ { 2 } \mathrm { e } } { \mathrm { dQ } _ { \mathrm { h } ^ { 2 } } } = \frac { - \mathrm { Q } _ { \mathrm { C } } } { 2 \mathrm { Q } _ { \mathrm { h } ^ { 2 } } }
B) d2edQh2=QcQh3\frac { \mathrm { d } ^ { 2 } \mathrm { e } } { \mathrm { dQ } _ { h ^ { 2 } } } = \frac { \mathrm { Q } _ { \mathrm { c } } } { \mathrm { Qh } ^ { 3 } }
C) d2edQh2=QcQh2\frac { \mathrm { d } ^ { 2 } \mathrm { e } } { \mathrm { dQ } _ { h ^ { 2 } } } = \frac { \mathrm { Q } _ { \mathrm { c } } } { \mathrm { Qh } ^ { 2 } }
D) d2edQh2=2QcQh3\frac { d ^ { 2 } e } { d Q _ { h } ^ { 2 } } = \frac { - 2 Q _ { c } } { Q _ { h } ^ { 3 } }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions