Solved

The Integral x29x2+1dx\int x ^ { 2 } \sqrt { 9 x ^ { 2 } + 1 } d x

Question 117

Multiple Choice

The integral x29x2+1dx\int x ^ { 2 } \sqrt { 9 x ^ { 2 } + 1 } d x is


A) 2sinh1(3x) +12x(9x2+1) 32+6x9x2+1432+C\frac { 2 \sinh ^ { - 1 } ( 3 x ) + 12 x \left( 9 x ^ { 2 } + 1 \right) ^ { \frac { 3 } { 2 } } + 6 x \sqrt { 9 x ^ { 2 } + 1 } } { 432 } + C
B) 2sinh1(3x) +12x(9x2+1) 32+6x9x2+1432+C\frac { - 2 \sinh ^ { - 1 } ( 3 x ) + 12 x \left( 9 x ^ { 2 } + 1 \right) ^ { \frac { 3 } { 2 } } + 6 x \sqrt { 9 x ^ { 2 } + 1 } } { 432 } + C
C) 2sinh1(3x) 12x(9x2+1) 326x9x2+1432+C\frac { - 2 \sinh ^ { - 1 } ( 3 x ) - 12 x \left( 9 x ^ { 2 } + 1 \right) ^ { \frac { 3 } { 2 } } - 6 x \sqrt { 9 x ^ { 2 } + 1 } } { 432 } + C
D) 2sinh1(3x) +12x(9x2+1) 326x9x2+1432+C\frac { 2 \sinh ^ { - 1 } ( 3 x ) + 12 x \left( 9 x ^ { 2 } + 1 \right) ^ { \frac { 3 } { 2 } } - 6 x \sqrt { 9 x ^ { 2 } + 1 } } { 432 } + C
E) 2sinh1(3x) +12x(9x2+1) 326x9x2+1432+C\frac { - 2 \sinh ^ { - 1 } ( 3 x ) + 12 x \left( 9 x ^ { 2 } + 1 \right) ^ { \frac { 3 } { 2 } } - 6 x \sqrt { 9 x ^ { 2 } + 1 } } { 432 } + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions