Solved

The General Solution of the First-Order Differential Equation (x3+x)y+4x2y=2\left( x ^ { 3 } + x \right) y ^ { \prime } + 4 x ^ { 2 } y = 2

Question 6

Multiple Choice

The general solution of the first-order differential equation (x3+x) y+4x2y=2\left( x ^ { 3 } + x \right) y ^ { \prime } + 4 x ^ { 2 } y = 2 is


A) 2y(1+x2) 2=x2+2lnx+C2 y \left( 1 + x ^ { 2 } \right) ^ { 2 } = x ^ { 2 } + 2 \ln x + C
B) x(1+x2) 2=x22lnx+Cx \left( 1 + x ^ { 2 } \right) ^ { 2 } = x ^ { 2 } - 2 \ln x + C
C) y(1+x2) 2=x2+2lnx+Cy \left( 1 + x ^ { 2 } \right) ^ { 2 } = x ^ { 2 } + 2 \ln x + C
D) y(1+x2) 2=x22lnx+Cy \left( 1 + x ^ { 2 } \right) ^ { 2 } = x ^ { 2 } - 2 \ln x + C
E) x(1+x2) 2=x2+2lnx+Cx \left( 1 + x ^ { 2 } \right) ^ { 2 } = x ^ { 2 } + 2 \ln x + C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions