Solved

Using Taylor Series About C = 2, the General Series x2yy+y=0x ^ { 2 } y ^ { \prime } - y ^ { \prime } + y = 0

Question 7

Multiple Choice

Using Taylor series about c = 2, the general series solution, with the first three nonzero terms, of the differential equation x2yy+y=0x ^ { 2 } y ^ { \prime } - y ^ { \prime } + y = 0 is


A) y=A(1(x2) 285(x2) 396) +B((x2) +(x2) 28(x2) 396+) y = A \left( 1 - \frac { ( x - 2 ) ^ { 2 } } { 8 } - \frac { 5 ( x - 2 ) ^ { 3 } } { 96 } - \cdots \right) + B \left( ( x - 2 ) + \frac { ( x - 2 ) ^ { 2 } } { 8 } - \frac { ( x - 2 ) ^ { 3 } } { 96 } + \cdots \right)
B) y=A(1(x2) 28+5(x2) 396+) +B((x2) (x2) 28(x2) 396) y = A \left( 1 - \frac { ( x - 2 ) ^ { 2 } } { 8 } + \frac { 5 ( x - 2 ) ^ { 3 } } { 96 } + \cdots \right) + B \left( ( x - 2 ) - \frac { ( x - 2 ) ^ { 2 } } { 8 } - \frac { ( x - 2 ) ^ { 3 } } { 96 } - \cdots \right)
C) y=A(1+(x2) 28+5(x2) 396+) +B((x2) +(x2) 28+(x2) 396+) y = A \left( 1 + \frac { ( x - 2 ) ^ { 2 } } { 8 } + \frac { 5 ( x - 2 ) ^ { 3 } } { 96 } + \cdots \right) + B \left( ( x - 2 ) + \frac { ( x - 2 ) ^ { 2 } } { 8 } + \frac { ( x - 2 ) ^ { 3 } } { 96 } + \cdots \right)
D) y=A(1(x2) 285(x2) 396) +B((x2) (x2) 28(x2) 396) y = A \left( 1 - \frac { ( x - 2 ) ^ { 2 } } { 8 } - \frac { 5 ( x - 2 ) ^ { 3 } } { 96 } - \cdots \right) + B \left( ( x - 2 ) - \frac { ( x - 2 ) ^ { 2 } } { 8 } - \frac { ( x - 2 ) ^ { 3 } } { 96 } - \cdots \right)
E) y=A(1+(x2) 28+5(x2) 396+) +B((x2) (x2) 28(x2) 396) y = A \left( 1 + \frac { ( x - 2 ) ^ { 2 } } { 8 } + \frac { 5 ( x - 2 ) ^ { 3 } } { 96 } + \cdots \right) + B \left( ( x - 2 ) - \frac { ( x - 2 ) ^ { 2 } } { 8 } - \frac { ( x - 2 ) ^ { 3 } } { 96 } - \cdots \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions