Solved

Using Maclaurin Series, the General Series Solution, with the First y=xyy ^ { \prime \prime } = x y

Question 72

Multiple Choice

Using Maclaurin series, the general series solution, with the first three nonzero terms, of the differential equation y=xyy ^ { \prime \prime } = x y is


A) y=A(1+x33!+4x46!+47x99!+) +B(x+2x44!25x77!+258x1010!) y = A \left( 1 + \frac { x ^ { 3 } } { 3 ! } + \frac { 4 x ^ { 4 } } { 6 ! } + \frac { 4 \cdot 7 x ^ { 9 } } { 9 ! } + \cdots \right) + B \left( x + \frac { 2 x ^ { 4 } } { 4 ! } - \frac { 2 \cdot 5 x ^ { 7 } } { 7 ! } + \frac { 2 \cdot 5 \cdot 8 x ^ { 10 } } { 10 ! } - \cdots \right)
B) y=A(1+x33!+4x46!+47x99!+) +B(x2x44!+25x77!258x1010!+) y = A \left( 1 + \frac { x ^ { 3 } } { 3 ! } + \frac { 4 x ^ { 4 } } { 6 ! } + \frac { 4 \cdot 7 x ^ { 9 } } { 9 ! } + \cdots \right) + B \left( x - \frac { 2 x ^ { 4 } } { 4 ! } + \frac { 2 \cdot 5 x ^ { 7 } } { 7 ! } - \frac { 2 \cdot 5 \cdot 8 x ^ { 10 } } { 10 ! } + \cdots \right)
C) y=A(1+x33!+4x46!+47x99!+) +B(x+2x44!+25x77!+258x1010!+) y = A \left( 1 + \frac { x ^ { 3 } } { 3 ! } + \frac { 4 x ^ { 4 } } { 6 ! } + \frac { 4 \cdot 7 x ^ { 9 } } { 9 ! } + \cdots \right) + B \left( x + \frac { 2 x ^ { 4 } } { 4 ! } + \frac { 2 \cdot 5 x ^ { 7 } } { 7 ! } + \frac { 2 \cdot 5 \cdot 8 x ^ { 10 } } { 10 ! } + \cdots \right)
D) y=A(1+x33!4x46!+47x99!) +B(x+2x44!+25x77!+258x1010!+) y = A \left( 1 + \frac { x ^ { 3 } } { 3 ! } - \frac { 4 x ^ { 4 } } { 6 ! } + \frac { 4 \cdot 7 x ^ { 9 } } { 9 ! } - \cdots \right) + B \left( x + \frac { 2 x ^ { 4 } } { 4 ! } + \frac { 2 \cdot 5 x ^ { 7 } } { 7 ! } + \frac { 2 \cdot 5 \cdot 8 x ^ { 10 } } { 10 ! } + \cdots \right)
E) y=A(1x33!+4x46!47x99!+) +B(x+2x44!+25x77!+258x1010!+) y = A \left( 1 - \frac { x ^ { 3 } } { 3 ! } + \frac { 4 x ^ { 4 } } { 6 ! } - \frac { 4 \cdot 7 x ^ { 9 } } { 9 ! } + \cdots \right) + B \left( x + \frac { 2 x ^ { 4 } } { 4 ! } + \frac { 2 \cdot 5 x ^ { 7 } } { 7 ! } + \frac { 2 \cdot 5 \cdot 8 x ^ { 10 } } { 10 ! } + \cdots \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions