Solved

Using Taylor Series About C = 1, the General Series y+2(x1)y=0y ^ { \prime } + 2 ( x - 1 ) y = 0

Question 31

Multiple Choice

Using Taylor series about c = 1, the general series solution, with the first three nonzero terms, of the differential equation y+2(x1) y=0y ^ { \prime } + 2 ( x - 1 ) y = 0 is


A) y=A(1+(x1) 2(x1) 42(x1) 66+) y = A \left( 1 + ( x - 1 ) ^ { 2 } - \frac { ( x - 1 ) ^ { 4 } } { 2 } - \frac { ( x - 1 ) ^ { 6 } } { 6 } + \cdots \right)
B) y=A(1(x1) 2+(x1) 42(x1) 66) y = A \left( 1 - ( x - 1 ) ^ { 2 } + \frac { ( x - 1 ) ^ { 4 } } { 2 } - \frac { ( x - 1 ) ^ { 6 } } { 6 } - \cdots \right)
C) y=A(1(x1) 2(x1) 42(x1) 66) y = A \left( 1 - ( x - 1 ) ^ { 2 } - \frac { ( x - 1 ) ^ { 4 } } { 2 } - \frac { ( x - 1 ) ^ { 6 } } { 6 } - \cdots \right)
D) y=A(1(x1) 2+(x1) 42(x1) 66+) y = A \left( 1 - ( x - 1 ) ^ { 2 } + \frac { ( x - 1 ) ^ { 4 } } { 2 } - \frac { ( x - 1 ) ^ { 6 } } { 6 } + \cdots \right)
E) y=A(1+(x1) 2+(x1) 42+(x1) 66+) y = A \left( 1 + ( x - 1 ) ^ { 2 } + \frac { ( x - 1 ) ^ { 4 } } { 2 } + \frac { ( x - 1 ) ^ { 6 } } { 6 } + \cdots \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions