Solved

Let f(x,y,z)=ln(xyz)f ( x , y , z ) = \ln ( x y z )

Question 110

Multiple Choice

Let f(x,y,z) =ln(xyz) f ( x , y , z ) = \ln ( x y z ) . Its gradient vector field is


A) f(x,y) =1xi1yj+1zk\nabla f ( x , y ) = \frac { 1 } { x } \mathbf { i } - \frac { 1 } { y } \mathbf { j } + \frac { 1 } { z } \mathbf { k }
B) f(x,y) =1xi+1yj+1zk\nabla f ( x , y ) = \frac { 1 } { x } \mathbf { i } + \frac { 1 } { y } \mathbf { j } + \frac { 1 } { z } \mathbf { k }
C) f(x,y) =1xi+1yj1zk\nabla f ( x , y ) = \frac { 1 } { x } \mathbf { i } + \frac { 1 } { y } \mathbf { j } - \frac { 1 } { z } \mathbf { k }
D) f(x,y) =1xi1yj1zk\nabla f ( x , y ) = \frac { 1 } { x } \mathbf { i } - \frac { 1 } { y } \mathbf { j } - \frac { 1 } { z } \mathbf { k }
E) f(x,y) =1xi+1yj+1zk\nabla f ( x , y ) = - \frac { 1 } { x } \mathbf { i } + \frac { 1 } { y } \mathbf { j } + \frac { 1 } { z } \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions