Solved

If R Is the Region Bounded By y=9x2y = \sqrt { 9 - x ^ { 2 } }

Question 59

Multiple Choice

If R is the region bounded by y=9x2y = \sqrt { 9 - x ^ { 2 } } in the first quadrant, then \iint R ydAy d A in polar form is


A) 0π2[03rsinθdr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r \sin \theta d r \right] d \theta
B) 0π4[03rsinθdr]dθ\int _ { 0 } ^ { \frac { \pi } { 4 } } \left[ \int _ { 0 } ^ { 3 } r \sin \theta d r \right] d \theta
C) π4π4[03r2sinθdr]dθ\int _ { - \frac { \pi } { 4 } } ^ { \frac { \pi } { 4 } } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } \sin \theta d r \right] d \theta
D) 0π2[03r2sinθdr]dθ\int _ { 0 } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } \sin \theta d r \right] d \theta
E) π4π2[03r2sinθdr]dθ\int _ { \frac { \pi } { 4 } } ^ { \frac { \pi } { 2 } } \left[ \int _ { 0 } ^ { 3 } r ^ { 2 } \sin \theta d r \right] d \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions