Solved

If R Is the Region Bounded By x2+y2=1,x2+y2=9x ^ { 2 } + y ^ { 2 } = 1 , x ^ { 2 } + y ^ { 2 } = 9

Question 118

Multiple Choice

If R is the region bounded by x2+y2=1,x2+y2=9x ^ { 2 } + y ^ { 2 } = 1 , x ^ { 2 } + y ^ { 2 } = 9 then \iint R 5x2+y2dA5 \sqrt { x ^ { 2 } + y ^ { 2 } } d A in polar form is


A) 0π[135r2dr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 1 } ^ { 3 } 5 r ^ { 2 } d r \right] d \theta
B) 02π[135rdr]dθ\int _ { 0 } ^ { 2 \pi } \left[ \int _ { 1 } ^ { 3 } 5 r d r \right] d \theta
C) 02π[135r2dr]dθ\int _ { 0 } ^ { 2 \pi } \left[ \int _ { 1 } ^ { 3 } 5 r ^ { 2 } d r \right] d \theta
D) 0π[135rdr]dθ\int _ { 0 } ^ { \pi } \left[ \int _ { 1 } ^ { 3 } 5 r d r \right] d \theta
E) π2π[135r2dr]dθ\int _ { \pi } ^ { 2 \pi } \left[ \int _ { 1 } ^ { 3 } 5 r ^ { 2 } d r \right] d \theta

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions