Solved

The Solution r(t)\mathbf { r } ( t ) To the Differential Equation

Question 60

Multiple Choice

The solution r(t) \mathbf { r } ( t ) to the differential equation r(t) =ti+etj1t2k\mathbf { r } ^ { \prime } ( t ) = t \mathbf { i } + e ^ { - t } \mathbf { j } - \frac { 1 } { t ^ { 2 } } \mathbf { k } with the condition r(1) =ij+3k\mathbf { r } ( 1 ) = \mathbf { i } - \mathbf { j } + 3 \mathbf { k } is


A) (ete) i(32t252) j+t3k- \left( e ^ { t } - e \right) \mathbf { i } - \left( \frac { 3 } { 2 } t ^ { 2 } - \frac { 5 } { 2 } \right) \mathbf { j } + t ^ { 3 } \mathbf { k }
B) (ete) i+(32t252) j+t3k- \left( e ^ { t } - e \right) \mathbf { i } + \left( \frac { 3 } { 2 } t ^ { 2 } - \frac { 5 } { 2 } \right) \mathbf { j } + t ^ { 3 } \mathbf { k }
C) (ete) i(32t252) j+t3k\left( e ^ { t } - e \right) \mathbf { i } - \left( \frac { 3 } { 2 } t ^ { 2 } - \frac { 5 } { 2 } \right) \mathbf { j } + t ^ { 3 } \mathbf { k }
D) (ete) i+(32t252) j+t3k\left( e ^ { t } - e \right) \mathbf { i } + \left( \frac { 3 } { 2 } t ^ { 2 } - \frac { 5 } { 2 } \right) \mathbf { j } + t ^ { 3 } \mathbf { k }
E) (ete) i(32t252) jt3k\left( e ^ { t } - e \right) \mathbf { i } - \left( \frac { 3 } { 2 } t ^ { 2 } - \frac { 5 } { 2 } \right) \mathbf { j } - t ^ { 3 } \mathbf { k }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions