Multiple Choice
Find the unit tangent vector of the given curve.
-r(t) = ( 8t cos t - 8 sin t) j + ( 8t sin t + 8 cos t) k
A) T = (-8 sin t) j + ( 8 cos t) k
B) T = ( 8 cos t) j - ( 8 sin t) k
C) T = (-sin t) j + (cos t) k
D) T = - (sin t) j +
(cos t) k
Correct Answer:

Verified
Correct Answer:
Verified
Q52: FInd the tangential and normal components of
Q53: Verify that the curve r(t) lies on
Q54: Find the curvature of the space curve.<br>-r(t)
Q55: Find the unit tangent vector T and
Q56: Find the unit tangent vector T
Q58: Evaluate the integral.<br>-<img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9662/.jpg" alt="Evaluate the integral.
Q59: If r(t) is the position vector of
Q60: Graph the curve described by the
Q61: Find the curvature of the curve r(t).<br>-r(t)
Q62: Evaluate the integral.<br>-<img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9662/.jpg" alt="Evaluate the integral.