menu-iconExamlexExamLexServices

Discover

Ask a Question
  1. All Topics
  2. Topic
    Mathematics
  3. Study Set
    Calculus Early
  4. Exam
    Exam 14: Vector-Valued Functions
  5. Question
    Find the Unit Tangent Vector of the Given Curve
Solved

Find the Unit Tangent Vector of the Given Curve

Question 57

Question 57

Multiple Choice

Find the unit tangent vector of the given curve.
-r(t) = ( 8t cos t - 8 sin t) j + ( 8t sin t + 8 cos t) k


A) T = (-8 sin t) j + ( 8 cos t) k
B) T = ( 8 cos t) j - ( 8 sin t) k
C) T = (-sin t) j + (cos t) k
D) T = - Find the unit tangent vector of the given curve.  -r(t)  = ( 8t cos t - 8 sin t) j + ( 8t sin t + 8 cos t) k A)  T = (-8 sin t) j + ( 8 cos t) k B)  T = ( 8 cos t) j - ( 8 sin t) k C)  T = (-sin t) j + (cos t) k D)  T = -   (sin t) j +   (cos t) k (sin t) j + Find the unit tangent vector of the given curve.  -r(t)  = ( 8t cos t - 8 sin t) j + ( 8t sin t + 8 cos t) k A)  T = (-8 sin t) j + ( 8 cos t) k B)  T = ( 8 cos t) j - ( 8 sin t) k C)  T = (-sin t) j + (cos t) k D)  T = -   (sin t) j +   (cos t) k (cos t) k

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions

Q52: FInd the tangential and normal components of

Q53: Verify that the curve r(t) lies on

Q54: Find the curvature of the space curve.<br>-r(t)

Q55: Find the unit tangent vector T and

Q56: Find the unit tangent vector T

Q58: Evaluate the integral.<br>-<img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9662/.jpg" alt="Evaluate the integral.

Q59: If r(t) is the position vector of

Q60: Graph the curve described by the

Q61: Find the curvature of the curve r(t).<br>-r(t)

Q62: Evaluate the integral.<br>-<img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9662/.jpg" alt="Evaluate the integral.

Examlex

ExamLex

About UsContact UsPerks CenterHomeschoolingTest Prep

Work With Us

Campus RepresentativeInfluencers

Links

FaqPricingChrome Extension

Download The App

Get App StoreGet Google Play

Policies

Privacy PolicyTerms of ServiceHonor CodeCommunity Guidelines

Scan To Download

qr-code

Copyright © (2025) ExamLex LLC.

Privacy PolicyTerms Of ServiceHonor CodeCommunity Guidelines