Multiple Choice
Find the unit tangent vector T and the principal unit normal vector N.
-r(t) = ( 3 + t) i + ( 7 + ln(sec t) ) j - 3k, - /2 < t < /2
A) T = (-cos t) i - (sin t) j; N = (-cos t) i + (sin t) j
B) T = (cos t) i + (sin t) j; N = (- sin t) i + (cos t) j
C) T = (cos t) i - (sin t) j; N = (-sin t) i - (cos t) j
D) T = (-cos t) i - (sin t) j; N = (sin t) i - (cos t) j
Correct Answer:

Verified
Correct Answer:
Verified
Q51: If r(t) is the position vector of
Q52: FInd the tangential and normal components of
Q53: Verify that the curve r(t) lies on
Q54: Find the curvature of the space curve.<br>-r(t)
Q55: Find the unit tangent vector T and
Q57: Find the unit tangent vector of the
Q58: Evaluate the integral.<br>-<img src="https://d2lvgg3v3hfg70.cloudfront.net/TB9662/.jpg" alt="Evaluate the integral.
Q59: If r(t) is the position vector of
Q60: Graph the curve described by the
Q61: Find the curvature of the curve r(t).<br>-r(t)