Solved

Consider the Matrix
Which of These Is a Complete

Question 2

Multiple Choice

Consider the matrix  Consider the matrix   Which of these is a complete list of eigenvalue-eigenvector pairs of A? A)    \lambda_{1}=4, \quad \xi_{1}=\left(\begin{array}{l}3 \\ 1\end{array}\right)  \quad \lambda_{2}=-4, \quad \xi_{2}=\left(\begin{array}{c}-1 \\ 1\end{array}\right)    B)    \lambda_{1}=4, \xi_{1}=\left(\begin{array}{l}1 \\ 3\end{array}\right) , \lambda_{2}=-4, \xi_{2}=\left(\begin{array}{c}1 \\ -1\end{array}\right)    C)    \lambda_{1}=2, \xi_{1}=\left(\begin{array}{l}3 \\ 1\end{array}\right)  \quad \lambda_{2}=-2, \quad \xi_{2}=\left(\begin{array}{c}-1 \\ 1\end{array}\right)    D)    \lambda_{1}=2, \quad \xi_{1}=\left(\begin{array}{l}1 \\ 3\end{array}\right)  \quad \lambda_{2}=-2, \quad \xi_{2}=\left(\begin{array}{c}1 \\ -1\end{array}\right)
Which of these is a complete list of eigenvalue-eigenvector pairs of A?


A) λ1=4,ξ1=(31) λ2=4,ξ2=(11) \lambda_{1}=4, \quad \xi_{1}=\left(\begin{array}{l}3 \\ 1\end{array}\right) \quad \lambda_{2}=-4, \quad \xi_{2}=\left(\begin{array}{c}-1 \\ 1\end{array}\right)
B) λ1=4,ξ1=(13) ,λ2=4,ξ2=(11) \lambda_{1}=4, \xi_{1}=\left(\begin{array}{l}1 \\ 3\end{array}\right) , \lambda_{2}=-4, \xi_{2}=\left(\begin{array}{c}1 \\ -1\end{array}\right)
C) λ1=2,ξ1=(31) λ2=2,ξ2=(11) \lambda_{1}=2, \xi_{1}=\left(\begin{array}{l}3 \\ 1\end{array}\right) \quad \lambda_{2}=-2, \quad \xi_{2}=\left(\begin{array}{c}-1 \\ 1\end{array}\right)
D) λ1=2,ξ1=(13) λ2=2,ξ2=(11) \lambda_{1}=2, \quad \xi_{1}=\left(\begin{array}{l}1 \\ 3\end{array}\right) \quad \lambda_{2}=-2, \quad \xi_{2}=\left(\begin{array}{c}1 \\ -1\end{array}\right)

Correct Answer:

verifed

Verified

Related Questions