Solved

Consider the First-Order Homogeneous System of Linear Differential Equations x(t)=C1(2516)e25t+C2(1625)e16t \mathbf{x}(t)=C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right) e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right) e^{-16 t}

Question 39

Multiple Choice

Consider the first-order homogeneous system of linear differential equations  Consider the first-order homogeneous system of linear differential equations   =   x Which of these is the genreal solution of the system? Here,   and   are arbitrary real constants. A)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right)  e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right)  e^{-16 t}   B)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right)  e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right)  e^{-16 t}   C)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{-20 t}   D)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right)  e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right)  e^{16 t}   E)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{-20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{20 t} =  Consider the first-order homogeneous system of linear differential equations   =   x Which of these is the genreal solution of the system? Here,   and   are arbitrary real constants. A)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right)  e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right)  e^{-16 t}   B)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right)  e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right)  e^{-16 t}   C)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{-20 t}   D)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right)  e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right)  e^{16 t}   E)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{-20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{20 t} x
Which of these is the genreal solution of the system? Here,  Consider the first-order homogeneous system of linear differential equations   =   x Which of these is the genreal solution of the system? Here,   and   are arbitrary real constants. A)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right)  e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right)  e^{-16 t}   B)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right)  e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right)  e^{-16 t}   C)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{-20 t}   D)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right)  e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right)  e^{16 t}   E)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{-20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{20 t} and  Consider the first-order homogeneous system of linear differential equations   =   x Which of these is the genreal solution of the system? Here,   and   are arbitrary real constants. A)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right)  e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right)  e^{-16 t}   B)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right)  e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right)  e^{-16 t}   C)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{-20 t}   D)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right)  e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right)  e^{16 t}   E)    \mathbf{x}(t) =C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{-20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right)  e^{20 t} are arbitrary real constants.


A) x(t) =C1(2516) e25t+C2(1625) e16t \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-25 \\ -16\end{array}\right) e^{-25 t}+C_{2}\left(\begin{array}{l}16 \\ -25\end{array}\right) e^{-16 t}
B) x(t) =C1(1625) e25t+C2(1625) e16t \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{-16 t}
C) x(t) =C1(5i4i) e20t+C2(5i4i) e20t \mathbf{x}(t) =C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}
D) x(t) =C1(1625) e25t+C2(1625) e16t \mathbf{x}(t) =C_{1}\left(\begin{array}{l}-16 \\ -25\end{array}\right) e^{25 t}+C_{2}\left(\begin{array}{c}16 \\ -25\end{array}\right) e^{16 t}
E) x(t) =C1(5i4i) e20t+C2(5i4i) e20t \mathbf{x}(t) =C_{1}\left(\begin{array}{l}5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{-20 t}+C_{2}\left(\begin{array}{c}-5 \mathrm{i} \\ 4 \mathrm{i}\end{array}\right) e^{20 t}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions