Solved

Consider the First-Order Differential Equation
Assume a Solution n=017c03(n!)2x3n \sum_{n=0}^{\infty} \frac{17 c_{0}}{3(n !)^{2}} x^{3 n}

Question 69

Multiple Choice

Consider the first-order differential equation  Consider the first-order differential equation    Assume a solution of this equation can be represented as a power series   . Assume that C<sub>0</sub> is known. Which of these power series equals y(x) ? A)    \sum_{n=0}^{\infty} \frac{17 c_{0}}{3(n !) ^{2}} x^{3 n}   B)    \sum_{n=0}^{\infty} \frac{c_{0} 17^{n}}{n ! 3} x^{3 n}   C)    \sum_{n=0}^{\infty} \frac{17 c_{0}}{3^{n} n !} x^{3 n}   D)    \sum_{n=0}^{\infty} \frac{17 c_{0}}{3^{n}(n !) ^{2}} x^{3 n}
Assume a solution of this equation can be represented as a power series  Consider the first-order differential equation    Assume a solution of this equation can be represented as a power series   . Assume that C<sub>0</sub> is known. Which of these power series equals y(x) ? A)    \sum_{n=0}^{\infty} \frac{17 c_{0}}{3(n !) ^{2}} x^{3 n}   B)    \sum_{n=0}^{\infty} \frac{c_{0} 17^{n}}{n ! 3} x^{3 n}   C)    \sum_{n=0}^{\infty} \frac{17 c_{0}}{3^{n} n !} x^{3 n}   D)    \sum_{n=0}^{\infty} \frac{17 c_{0}}{3^{n}(n !) ^{2}} x^{3 n} .
Assume that C0 is known.
Which of these power series equals y(x) ?


A) n=017c03(n!) 2x3n \sum_{n=0}^{\infty} \frac{17 c_{0}}{3(n !) ^{2}} x^{3 n}
B) n=0c017nn!3x3n \sum_{n=0}^{\infty} \frac{c_{0} 17^{n}}{n ! 3} x^{3 n}
C) n=017c03nn!x3n \sum_{n=0}^{\infty} \frac{17 c_{0}}{3^{n} n !} x^{3 n}
D) n=017c03n(n!) 2x3n \sum_{n=0}^{\infty} \frac{17 c_{0}}{3^{n}(n !) ^{2}} x^{3 n}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions