Solved

Consider the Second-Order Differential Equation y1(x)=x4n=0anxn,y2(x)=lnx(y1(x)+x4n=0bnxn) y_{1}(x)=x^{-4} \sum_{n=0}^{\infty} a_{n} x^{n}, y_{2}(x)=\ln x\left(y_{1}(x)+x^{-4} \sum_{n=0}^{\infty} b_{n} x^{n}\right)

Question 74

Multiple Choice

Consider the second-order differential equation  Consider the second-order differential equation   . Which of the following is the form of a pair of linearly independent solutions of this differential equation? A)    y_{1}(x) =x^{-4} \sum_{n=0}^{\infty} a_{n} x^{n}, y_{2}(x) =\ln x\left(y_{1}(x) +x^{-4} \sum_{n=0}^{\infty} b_{n} x^{n}\right)    B)    y_{1}(x) =x^{4} \sum_{n=0}^{\infty} a_{n} x^{n}, y_{2}(x) =\ln x\left(y_{1}(x) +x^{4} \sum_{n=0}^{\infty} b_{n} x^{n}\right)    C)    y_{1}(x) =x^{-4} \sum_{n=0}^{\infty} a_{n} x^{n}, y_{2}(x) =y_{1}(x)  \ln x+x^{-4} \sum_{n=0}^{\infty} b_{n} x^{n}   D)    \left.y_{1}(x) =x^{4} \sum_{n=0}^{\infty} a_{n} x^{n}, y_{2}(x) =y_{1} x\right)  \ln x+x^{4} \sum_{n=0}^{\infty} b_{n} x^{n} .
Which of the following is the form of a pair of linearly independent solutions of this differential equation?


A) y1(x) =x4n=0anxn,y2(x) =lnx(y1(x) +x4n=0bnxn) y_{1}(x) =x^{-4} \sum_{n=0}^{\infty} a_{n} x^{n}, y_{2}(x) =\ln x\left(y_{1}(x) +x^{-4} \sum_{n=0}^{\infty} b_{n} x^{n}\right)
B) y1(x) =x4n=0anxn,y2(x) =lnx(y1(x) +x4n=0bnxn) y_{1}(x) =x^{4} \sum_{n=0}^{\infty} a_{n} x^{n}, y_{2}(x) =\ln x\left(y_{1}(x) +x^{4} \sum_{n=0}^{\infty} b_{n} x^{n}\right)
C) y1(x) =x4n=0anxn,y2(x) =y1(x) lnx+x4n=0bnxn y_{1}(x) =x^{-4} \sum_{n=0}^{\infty} a_{n} x^{n}, y_{2}(x) =y_{1}(x) \ln x+x^{-4} \sum_{n=0}^{\infty} b_{n} x^{n}
D) y1(x) =x4n=0anxn,y2(x) =y1x) lnx+x4n=0bnxn \left.y_{1}(x) =x^{4} \sum_{n=0}^{\infty} a_{n} x^{n}, y_{2}(x) =y_{1} x\right) \ln x+x^{4} \sum_{n=0}^{\infty} b_{n} x^{n}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions