Solved

Which of These Is the General Solution of the Second-Order y(t)=C1et+C2tet+Asin(7t)+Bcos(7t)+Csin(5π2t)+Dcos(5π2t) y(t)=C_{1} e^{t}+C_{2} t e^{t}+A \sin (\sqrt{7} t)+B \cos (\sqrt{7} t)+C \sin \left(\frac{5 \pi}{2} t\right)+D \cos \left(\frac{5 \pi}{2} t\right)

Question 77

Multiple Choice

Which of these is the general solution of the second-order nonhomogeneous differential equation  Which of these is the general solution of the second-order nonhomogeneous differential equation   , and all capital letters are arbitrary real constants. A)    y(t) =C_{1} e^{t}+C_{2} t e^{t}+A \sin (\sqrt{7} t) +B \cos (\sqrt{7} t) +C \sin \left(\frac{5 \pi}{2} t\right) +D \cos \left(\frac{5 \pi}{2} t\right)    B)    y(t) =C_{1}+C_{2} t+A \sin (\sqrt{7} t) +B \cos (\sqrt{7} t) +C \sin \left(\frac{5 \pi}{2} t\right) +D \cos \left(\frac{5 \pi}{2} t\right)    C)    y(t) =C_{1}+C_{2} t+A \sin (\sqrt{7} t) +B \cos \left(\frac{5 \pi}{2} t\right)    D)    y(t) =C_{1} t+A \sin (\sqrt{7} t) +B \cos \left(\frac{5 \pi}{2} t\right)    E)    y(t) =C_{1} t+A \sin (\sqrt{7} t) +B \cos (\sqrt{7} t) +C \sin \left(\frac{5 \pi}{2} t\right) +D \cos \left(\frac{5 \pi}{2} t\right)  , and all capital letters are arbitrary real constants.


A) y(t) =C1et+C2tet+Asin(7t) +Bcos(7t) +Csin(5π2t) +Dcos(5π2t) y(t) =C_{1} e^{t}+C_{2} t e^{t}+A \sin (\sqrt{7} t) +B \cos (\sqrt{7} t) +C \sin \left(\frac{5 \pi}{2} t\right) +D \cos \left(\frac{5 \pi}{2} t\right)
B) y(t) =C1+C2t+Asin(7t) +Bcos(7t) +Csin(5π2t) +Dcos(5π2t) y(t) =C_{1}+C_{2} t+A \sin (\sqrt{7} t) +B \cos (\sqrt{7} t) +C \sin \left(\frac{5 \pi}{2} t\right) +D \cos \left(\frac{5 \pi}{2} t\right)
C) y(t) =C1+C2t+Asin(7t) +Bcos(5π2t) y(t) =C_{1}+C_{2} t+A \sin (\sqrt{7} t) +B \cos \left(\frac{5 \pi}{2} t\right)
D) y(t) =C1t+Asin(7t) +Bcos(5π2t) y(t) =C_{1} t+A \sin (\sqrt{7} t) +B \cos \left(\frac{5 \pi}{2} t\right)
E) y(t) =C1t+Asin(7t) +Bcos(7t) +Csin(5π2t) +Dcos(5π2t) y(t) =C_{1} t+A \sin (\sqrt{7} t) +B \cos (\sqrt{7} t) +C \sin \left(\frac{5 \pi}{2} t\right) +D \cos \left(\frac{5 \pi}{2} t\right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions