Solved

Refer to the Information in the Graph Below x2x ^ { 2 }

Question 40

Multiple Choice

Refer to the information in the graph below. Given functions f(x) = x2x ^ { 2 } + 4x + 4 and g(x) = x2x ^ { 2 } - 4x + 4, set up a definite integral or sum of definite integrals that gives the area of the shaded portion.  Refer to the information in the graph below. Given functions f(x)  =  x ^ { 2 }  + 4x + 4 and g(x)  =  x ^ { 2 }  - 4x + 4, set up a definite integral or sum of definite integrals that gives the area of the shaded portion.   A)   \int _ { - 2 } ^ { 0 } - 8 x d x + \int _ { 0 } ^ { 2 } 8 x d x  B)   \int _ { - 2 } ^ { - 4 } \left[ \left( x ^ { 2 } - 4 x + 4 \right)  - \left( x ^ { 2 } + 4 x + 4 \right)  \right] d x  C)   \int _ { - 2 } ^ { 0 } 8 x d x  +  \int _ { 0 } ^ { 2 } - 8 x d x  D)   \int _ { - 2 } ^ { 2 } \left[ \left( x ^ { 2 } - 4 x + 4 \right)  - \left( x ^ { 2 } + 4 x + 4 \right)  \right] d x  E)  none of these


A) 208xdx+028xdx\int _ { - 2 } ^ { 0 } - 8 x d x + \int _ { 0 } ^ { 2 } 8 x d x
B) 24[(x24x+4) (x2+4x+4) ]dx\int _ { - 2 } ^ { - 4 } \left[ \left( x ^ { 2 } - 4 x + 4 \right) - \left( x ^ { 2 } + 4 x + 4 \right) \right] d x
C) 208xdx\int _ { - 2 } ^ { 0 } 8 x d x + 028xdx\int _ { 0 } ^ { 2 } - 8 x d x
D) 22[(x24x+4) (x2+4x+4) ]dx\int _ { - 2 } ^ { 2 } \left[ \left( x ^ { 2 } - 4 x + 4 \right) - \left( x ^ { 2 } + 4 x + 4 \right) \right] d x
E) none of these

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions