In the Previous Two Problems, the Solution For u(x,y)
Question 3
Question 3
Multiple Choice
In the previous two problems, the solution for u(x,y) is
A) u=∑n=1∞cncos(nπx) sinh(nπx) , where cn=∫02f(x) cos(nπx) dx/sinh(2nπ) B) u=∑n=1∞cnsin(nπx) sinh(nπy) , where cn=∫02f(x) cos(nπx) dx/sinh(2nπ) C) u=c0y+∑n=1∞cncos(nπx) sinh(nπy) , where cn=∫02f(x) dx/4 and cn=∫02f(x) cos(nπx) dx/sinh(2nπ) D) u=∑n=1∞cncos(nπx) cosh(nπy) , where cn=∫02f(x) cos(nπx) dx/sinh(2nπ) E) u=∑n=1∞cnsin(nπx) cosh(nπy) , where cn=∫02f(x) cos(nπx) dx/sinh(2nπ)