Solved

The Solution of the Eigenvalue Problem y+λy=0,y(0)=0,y(1)=0y ^ { \prime \prime } + \lambda y = 0 , y ^ { \prime } ( 0 ) = 0 , y ( 1 ) = 0

Question 40

Multiple Choice

The solution of the eigenvalue problem y+λy=0,y(0) =0,y(1) =0y ^ { \prime \prime } + \lambda y = 0 , y ^ { \prime } ( 0 ) = 0 , y ( 1 ) = 0 is


A) λ=n2π2/4,y=cos(nπx/2) ,n=1,2,3,\lambda = n ^ { 2 } \pi ^ { 2 } / 4 , y = \cos ( n \pi x / 2 ) , n = 1,2,3 , \ldots
B) λ=nπ/2,y=cos(nπx/2) ,n=1,2,3,\lambda = n \pi / 2 , y = \cos ( n \pi x / 2 ) , n = 1,2,3 , \ldots
C) λ=n2π2/4,y=sin(nπx/2) ,n=1,2,3,\lambda = n ^ { 2 } \pi ^ { 2 } / 4 , y = \sin ( n \pi x / 2 ) , n = 1,2,3 , \ldots
D) λ=(2n1) π/2,y=cos((2n1) πx/2) ,n=1,2,3,\lambda = ( 2 n - 1 ) \pi / 2 , y = \cos ( ( 2 n - 1 ) \pi x / 2 ) , n = 1,2,3 , \ldots
E) λ=(2n1) 2π2/4,y=cos((2n1) πx/2) ,n=1,2,3,\lambda = ( 2 n - 1 ) ^ { 2 } \pi ^ { 2 } / 4 , y = \cos ( ( 2 n - 1 ) \pi x / 2 ) , n = 1,2,3 , \ldots

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions