Solved

A Uniform Beam of Length 10 Has a Concentrated Load w0w _ { 0 }

Question 36

Multiple Choice

A uniform beam of length 10 has a concentrated load w0w _ { 0 } at x=5x = 5 . It is embedded at both ends. The boundary value problem for the deflections, y(x) y ( x ) , for this system is


A) y=ELw0δ(x5) ,y(0) =0,y(0) =0,y(10) =0,y(10) =0y ^ { \prime \prime \prime \prime } = E L w _ { 0 } \delta ( x - 5 ) , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0 , y ( 10 ) = 0 , y ^ { \prime } ( 10 ) = 0
B) y=Elw0δ(x10) ,y(0) =0,y(0) =0,y(10) =0,y(10) =0y ^ { \prime \prime } = E l w _ { 0 } \delta ( x - 10 ) , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0 , y ( 10 ) = 0 , y ^ { \prime } ( 10 ) = 0
C) Ely=w0δ(x5) ,y(0) =0,y(0) =0,y(10) =0,y(10) =0E l y ^ { \prime \prime } = w _ { 0 } \delta ( x - 5 ) , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0 , y ( 10 ) = 0 , y ^ { \prime } ( 10 ) = 0
D) ELy=w0δ(x5) ,y(0) =0,y(0) =0,y(10) =0,y(10) =0E L y ^ { \prime \prime \prime } = w _ { 0 } \delta ( x - 5 ) , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0 , y ( 10 ) = 0 , y ^ { \prime } ( 10 ) = 0
E) ELy=w0δ(x10) ,y(0) =0,y(0) =0,y(10) =0,y(10) =0E L y ^ { \prime \prime \prime \prime } = w _ { 0 } \delta ( x - 10 ) , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0 , y ( 10 ) = 0 , y ^ { \prime } ( 10 ) = 0

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions