Question 36
Multiple Choice A uniform beam of length 10 has a concentrated load w 0 w _ { 0 } w 0 at x = 5 x = 5 x = 5 . It is embedded at both ends. The boundary value problem for the deflections, y ( x ) y ( x ) y ( x ) , for this system is
A) y ′ ′ ′ ′ = E L w 0 δ ( x − 5 ) , y ( 0 ) = 0 , y ′ ( 0 ) = 0 , y ( 10 ) = 0 , y ′ ( 10 ) = 0 y ^ { \prime \prime \prime \prime } = E L w _ { 0 } \delta ( x - 5 ) , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0 , y ( 10 ) = 0 , y ^ { \prime } ( 10 ) = 0 y ′′′′ = E L w 0 δ ( x − 5 ) , y ( 0 ) = 0 , y ′ ( 0 ) = 0 , y ( 10 ) = 0 , y ′ ( 10 ) = 0 B) y ′ ′ = E l w 0 δ ( x − 10 ) , y ( 0 ) = 0 , y ′ ( 0 ) = 0 , y ( 10 ) = 0 , y ′ ( 10 ) = 0 y ^ { \prime \prime } = E l w _ { 0 } \delta ( x - 10 ) , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0 , y ( 10 ) = 0 , y ^ { \prime } ( 10 ) = 0 y ′′ = El w 0 δ ( x − 10 ) , y ( 0 ) = 0 , y ′ ( 0 ) = 0 , y ( 10 ) = 0 , y ′ ( 10 ) = 0 C) E l y ′ ′ = w 0 δ ( x − 5 ) , y ( 0 ) = 0 , y ′ ( 0 ) = 0 , y ( 10 ) = 0 , y ′ ( 10 ) = 0 E l y ^ { \prime \prime } = w _ { 0 } \delta ( x - 5 ) , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0 , y ( 10 ) = 0 , y ^ { \prime } ( 10 ) = 0 El y ′′ = w 0 δ ( x − 5 ) , y ( 0 ) = 0 , y ′ ( 0 ) = 0 , y ( 10 ) = 0 , y ′ ( 10 ) = 0 D) E L y ′ ′ ′ = w 0 δ ( x − 5 ) , y ( 0 ) = 0 , y ′ ( 0 ) = 0 , y ( 10 ) = 0 , y ′ ( 10 ) = 0 E L y ^ { \prime \prime \prime } = w _ { 0 } \delta ( x - 5 ) , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0 , y ( 10 ) = 0 , y ^ { \prime } ( 10 ) = 0 E L y ′′′ = w 0 δ ( x − 5 ) , y ( 0 ) = 0 , y ′ ( 0 ) = 0 , y ( 10 ) = 0 , y ′ ( 10 ) = 0 E) E L y ′ ′ ′ ′ = w 0 δ ( x − 10 ) , y ( 0 ) = 0 , y ′ ( 0 ) = 0 , y ( 10 ) = 0 , y ′ ( 10 ) = 0 E L y ^ { \prime \prime \prime \prime } = w _ { 0 } \delta ( x - 10 ) , y ( 0 ) = 0 , y ^ { \prime } ( 0 ) = 0 , y ( 10 ) = 0 , y ^ { \prime } ( 10 ) = 0 E L y ′′′′ = w 0 δ ( x − 10 ) , y ( 0 ) = 0 , y ′ ( 0 ) = 0 , y ( 10 ) = 0 , y ′ ( 10 ) = 0
Correct Answer:
Verified
Unlock this answer now Get Access to more Verified Answers free of charge
Access For Free