Solved

A Particular Solution Of Is
A) Xp=(2t+2t+3)\mathrm { X } _ { \boldsymbol { p } } = \left( \begin{array} { c } 2 t + 2 \\- t + 3\end{array} \right)

Question 41

Multiple Choice

A particular solution of X=(1211) X+(2t) \mathbf { X } ^ { \prime } = \left( \begin{array} { l l } 1 & - 2 \\1 & - 1\end{array} \right) \mathbf { X } + \left( \begin{array} { l } 2 \\t\end{array} \right) is


A) Xp=(2t+2t+3) \mathrm { X } _ { \boldsymbol { p } } = \left( \begin{array} { c } 2 t + 2 \\- t + 3\end{array} \right)
B) Xp=(2t+2t+3) \mathrm { X } _ { p } = \left( \begin{array} { c } - 2 t + 2 \\- t + 3\end{array} \right)
C) Xp=(2t+2t3) X _ { p } = \left( \begin{array} { c } - 2 t + 2 \\- t - 3\end{array} \right)
D) Xy=(2t+2t+3) \mathrm { X } _ { y } = \left( \begin{array} { c } - 2 t + 2 \\t + 3\end{array} \right)
E) Xy=(2t2t3) X _ { y } = \left( \begin{array} { c } - 2 t - 2 \\- t - 3\end{array} \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions